'Weak Dependency Graph [60.0]'
------------------------------
Answer: YES(?,O(n^1))
Input Problem: innermost runtime-complexity with respect to
Rules:
{ minus(minus(x)) -> x
, minus(h(x)) -> h(minus(x))
, minus(f(x, y)) -> f(minus(y), minus(x))}
Details:
We have computed the following set of weak (innermost) dependency pairs:
{ minus^#(minus(x)) -> c_0()
, minus^#(h(x)) -> c_1(minus^#(x))
, minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
The usable rules are:
{}
The estimated dependency graph contains the following edges:
{minus^#(h(x)) -> c_1(minus^#(x))}
==> {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
{minus^#(h(x)) -> c_1(minus^#(x))}
==> {minus^#(h(x)) -> c_1(minus^#(x))}
{minus^#(h(x)) -> c_1(minus^#(x))}
==> {minus^#(minus(x)) -> c_0()}
{minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
==> {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
{minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
==> {minus^#(h(x)) -> c_1(minus^#(x))}
{minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
==> {minus^#(minus(x)) -> c_0()}
We consider the following path(s):
1) { minus^#(h(x)) -> c_1(minus^#(x))
, minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
The usable rules for this path are empty.
We have oriented the usable rules with the following strongly linear interpretation:
Interpretation Functions:
minus(x1) = [0] x1 + [0]
h(x1) = [0] x1 + [0]
f(x1, x2) = [0] x1 + [0] x2 + [0]
minus^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1(x1) = [0] x1 + [0]
c_2(x1, x2) = [0] x1 + [0] x2 + [0]
We have applied the subprocessor on the resulting DP-problem:
'Weight Gap Principle'
----------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules:
{ minus^#(h(x)) -> c_1(minus^#(x))
, minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
Weak Rules: {}
Details:
We apply the weight gap principle, strictly orienting the rules
{minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
and weakly orienting the rules
{}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
Details:
Interpretation Functions:
minus(x1) = [0] x1 + [0]
h(x1) = [1] x1 + [0]
f(x1, x2) = [1] x1 + [1] x2 + [8]
minus^#(x1) = [1] x1 + [1]
c_0() = [0]
c_1(x1) = [1] x1 + [0]
c_2(x1, x2) = [1] x1 + [1] x2 + [6]
Finally we apply the subprocessor
We apply the weight gap principle, strictly orienting the rules
{minus^#(h(x)) -> c_1(minus^#(x))}
and weakly orienting the rules
{minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{minus^#(h(x)) -> c_1(minus^#(x))}
Details:
Interpretation Functions:
minus(x1) = [0] x1 + [0]
h(x1) = [1] x1 + [8]
f(x1, x2) = [1] x1 + [1] x2 + [8]
minus^#(x1) = [1] x1 + [1]
c_0() = [0]
c_1(x1) = [1] x1 + [3]
c_2(x1, x2) = [1] x1 + [1] x2 + [7]
Finally we apply the subprocessor
'Empty TRS'
-----------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {}
Weak Rules:
{ minus^#(h(x)) -> c_1(minus^#(x))
, minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
Details:
The given problem does not contain any strict rules
2) { minus^#(h(x)) -> c_1(minus^#(x))
, minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))
, minus^#(minus(x)) -> c_0()}
The usable rules for this path are empty.
We have oriented the usable rules with the following strongly linear interpretation:
Interpretation Functions:
minus(x1) = [0] x1 + [0]
h(x1) = [0] x1 + [0]
f(x1, x2) = [0] x1 + [0] x2 + [0]
minus^#(x1) = [0] x1 + [0]
c_0() = [0]
c_1(x1) = [0] x1 + [0]
c_2(x1, x2) = [0] x1 + [0] x2 + [0]
We have applied the subprocessor on the resulting DP-problem:
'Weight Gap Principle'
----------------------
Answer: YES(?,O(n^1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {minus^#(minus(x)) -> c_0()}
Weak Rules:
{ minus^#(h(x)) -> c_1(minus^#(x))
, minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
Details:
We apply the weight gap principle, strictly orienting the rules
{minus^#(minus(x)) -> c_0()}
and weakly orienting the rules
{ minus^#(h(x)) -> c_1(minus^#(x))
, minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
using the following strongly linear interpretation:
Processor 'Matrix Interpretation' oriented the following rules strictly:
{minus^#(minus(x)) -> c_0()}
Details:
Interpretation Functions:
minus(x1) = [1] x1 + [0]
h(x1) = [1] x1 + [0]
f(x1, x2) = [1] x1 + [1] x2 + [8]
minus^#(x1) = [1] x1 + [1]
c_0() = [0]
c_1(x1) = [1] x1 + [0]
c_2(x1, x2) = [1] x1 + [1] x2 + [1]
Finally we apply the subprocessor
'Empty TRS'
-----------
Answer: YES(?,O(1))
Input Problem: innermost DP runtime-complexity with respect to
Strict Rules: {}
Weak Rules:
{ minus^#(minus(x)) -> c_0()
, minus^#(h(x)) -> c_1(minus^#(x))
, minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))}
Details:
The given problem does not contain any strict rules