'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { minus(minus(x)) -> x , minus(h(x)) -> h(minus(x)) , minus(f(x, y)) -> f(minus(y), minus(x))} Details: We have computed the following set of weak (innermost) dependency pairs: { minus^#(minus(x)) -> c_0() , minus^#(h(x)) -> c_1(minus^#(x)) , minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} The usable rules are: {} The estimated dependency graph contains the following edges: {minus^#(h(x)) -> c_1(minus^#(x))} ==> {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} {minus^#(h(x)) -> c_1(minus^#(x))} ==> {minus^#(h(x)) -> c_1(minus^#(x))} {minus^#(h(x)) -> c_1(minus^#(x))} ==> {minus^#(minus(x)) -> c_0()} {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} ==> {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} ==> {minus^#(h(x)) -> c_1(minus^#(x))} {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} ==> {minus^#(minus(x)) -> c_0()} We consider the following path(s): 1) { minus^#(h(x)) -> c_1(minus^#(x)) , minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: minus(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] f(x1, x2) = [0] x1 + [0] x2 + [0] minus^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] c_2(x1, x2) = [0] x1 + [0] x2 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: { minus^#(h(x)) -> c_1(minus^#(x)) , minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} Weak Rules: {} Details: We apply the weight gap principle, strictly orienting the rules {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} Details: Interpretation Functions: minus(x1) = [0] x1 + [0] h(x1) = [1] x1 + [0] f(x1, x2) = [1] x1 + [1] x2 + [8] minus^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] c_2(x1, x2) = [1] x1 + [1] x2 + [6] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {minus^#(h(x)) -> c_1(minus^#(x))} and weakly orienting the rules {minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {minus^#(h(x)) -> c_1(minus^#(x))} Details: Interpretation Functions: minus(x1) = [0] x1 + [0] h(x1) = [1] x1 + [8] f(x1, x2) = [1] x1 + [1] x2 + [8] minus^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [3] c_2(x1, x2) = [1] x1 + [1] x2 + [7] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { minus^#(h(x)) -> c_1(minus^#(x)) , minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} Details: The given problem does not contain any strict rules 2) { minus^#(h(x)) -> c_1(minus^#(x)) , minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x)) , minus^#(minus(x)) -> c_0()} The usable rules for this path are empty. We have oriented the usable rules with the following strongly linear interpretation: Interpretation Functions: minus(x1) = [0] x1 + [0] h(x1) = [0] x1 + [0] f(x1, x2) = [0] x1 + [0] x2 + [0] minus^#(x1) = [0] x1 + [0] c_0() = [0] c_1(x1) = [0] x1 + [0] c_2(x1, x2) = [0] x1 + [0] x2 + [0] We have applied the subprocessor on the resulting DP-problem: 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {minus^#(minus(x)) -> c_0()} Weak Rules: { minus^#(h(x)) -> c_1(minus^#(x)) , minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} Details: We apply the weight gap principle, strictly orienting the rules {minus^#(minus(x)) -> c_0()} and weakly orienting the rules { minus^#(h(x)) -> c_1(minus^#(x)) , minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {minus^#(minus(x)) -> c_0()} Details: Interpretation Functions: minus(x1) = [1] x1 + [0] h(x1) = [1] x1 + [0] f(x1, x2) = [1] x1 + [1] x2 + [8] minus^#(x1) = [1] x1 + [1] c_0() = [0] c_1(x1) = [1] x1 + [0] c_2(x1, x2) = [1] x1 + [1] x2 + [1] Finally we apply the subprocessor 'Empty TRS' ----------- Answer: YES(?,O(1)) Input Problem: innermost DP runtime-complexity with respect to Strict Rules: {} Weak Rules: { minus^#(minus(x)) -> c_0() , minus^#(h(x)) -> c_1(minus^#(x)) , minus^#(f(x, y)) -> c_2(minus^#(y), minus^#(x))} Details: The given problem does not contain any strict rules